# C#代写 | COMP 476 Advanced Game Development Assignment 3

这个作业是用C#完成吃豆人的游戏开发

COMP 476 Advanced Game Development

Assignment 3

Question #1: (10%) [Theoretical Question]

Consider using a Hierarchical N-gram predictor to predict the next move of your

opponent for a fighting game where the only actions are L and R moves. Suppose

that we have the following training data (observed sequence of moves):

L R R R R R R L L R L R L R L R R L R R L R L R L L L L R L R R

a) (5%) Using a hierarchical 3-gram predictor, what is the predicted next action for

input “R R R”, if we want at least 5 samples for prediction?

b) (3%) Using a hierarchical 3-gram predictor, what is the predicted next action for

input “R R R”, if we want at least 15 samples for prediction?

c) (2%) Using a hierarchical 3-gram predictor, what is the predicted next action for

input “R R R”, if we want at least 30 samples for prediction?

For each question above, give the details of your prediction. Just writing “R” or “L”

without any justification will result in no marks.

Question #2: (5%) [Theoretical Question]

Consider a sphere with radius 3 and center point (1, 1, 1) colliding with triangular

face of an object. Vertices of the triangle are (-3, -3, -7), (3, -3, -1), and (-3, 3, -1).

Determine the following:

a) (3%) the contact normal; and

b) (2%) the interpenetration depth.

Question #3: (10%) [Theoretical Question]

Consider the following contact data from the above interpenetration of two objects

(object 1 being the side view of a right circular cone):

Centre of mass for object 1, = (12, 15.75, 0)

Centre of mass for object 2, = (29, 8, 0)

Mass for object 1, = 2

Mass for object 2, = 51.528

Contact point, = (19, 14, 0)

Contact normal, = (1, −1, 0)

Penetration depth, = 3.8

Note that the inertia tensor for object 1 (a right circular cone with radius 7 and

height 7) is

= 36.75 0 0

0 14.7 0

0 0 36.75

and the inertia tensor for object 2 is

= 389 0 0

0 389 0

0 0 778

Perform the following calculations (show your work) to use nonlinear projection to

resolve the interpenetration.

a) (4%) Find the linear and rotation components, (

)

and (!

)

, of the inertia for

both objects.

b) (1%) Compute the total inertia, ”

.

c) (1%) Compute the amount of linear movement (∆

)

for both objects.

d) (2%) Compute the amount of angular movement (∆!

)

for both objects.

e) (2%) Compute the total rotation , (∆$) %

(∆&)’

((&)’

), to be applied to the orientation

quaternions for both objects to obtain the required amounts of angular

movements.

f) (BONUS: 2%) Assuming the right circular cone has an orientation quaternion of

* = [1, 0, 0, 0], and noting that this orientation quaternion is altered by the total

rotation [0, (∆*)] (computed in e), expressed in quaternion form) by the formula

* = * + .

1

2

/ 00, (∆$) 1

(∆!

)

(!

)

23 *

(using quaternion math), what is the change in orientation of the cone in Euler

angles? (Show some work…)